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Abstract

We introduce Magistral, Mistral’s first reasoning model and our own scalable rein-
forcement learning (RL) pipeline. Instead of relying on existing implementations
and RL traces distilled from prior models, we follow a ground up approach, relying
solely on our own models and infrastructure. Notably, we demonstrate a stack that
enabled us to explore the limits of pure RL training of LLMs, present a simple
method to force the reasoning language of the model, and show that RL on text
data alone maintains most of the initial checkpoint’s capabilities. We find that RL
on text maintains or improves multimodal understanding, instruction following and
function calling. We present Magistral Medium, trained for reasoning on top of
Mistral Medium 3 with RL alone, and we open-source Magistral Small (Apache
2.0) which further includes cold-start data from Magistral Medium.

1 Introduction

Enhancing the reasoning abilities of large language models (LLMs) has emerged as a key frontier in
modern AI research. Reasoning models such as o1 [Jaech et al., 2024] differ widely from classic
chatbots, leveraging longer chains-of-thought to improve performance on complex tasks. The seminal
work by DeepSeek-AI et al. [2025] gave the community crucial insights on the Reinforcement
Learning from Verifiable Rewards (RLVR) recipe, for creating reasoning models at scale.

In this paper, we introduce Mistral’s first reasoning models: Magistral Small and Magistral Medium,
based on the Mistral Small 3 and Mistral Medium 3 models respectively, and outline our proposed
RLVR framework in detail. The key contributions of our paper are the following:

• We present in detail how we trained Magistral Medium with RL alone, with no distillation
from pre-existing reasoning models, yielding a nearly 50% boost in AIME-24 (pass@1).

• We discuss in depth the infrastructure and design choices that enable large-scale online
RL. Our asynchronous system enables fast, continuous RL training by updating generators
frequently without interrupting them, balancing efficiency with on-policyness.

• We present a simple yet effective strategy to make the model multilingual, where both the
chain-of-thought and the final response are written in the user’s language.

• We contribute insights that add to, or contradict, existing RLVR literature, for example on
whether RL can improve upon the distillation SFT baseline for small models. We also show
that multimodal reasoning capabilities emerge with online RL with textual data on top of
a multimodal model. We share the results of our unsuccessful experiments.

• We release the weights of Magistral Small (24B) under the Apache 2 license1.

1https://huggingface.co/mistralai/Magistral-Small-2506



Figure 1: Performance of Magistral Medium on common reasoning benchmarks. We highlight the
strength of our proposed RLVR framework, which yields a 50% increase in AIME-24 (pass@1) over the initial
Mistral Medium 3 checkpoint, without any cold-start reasoning traces. We compare against analogous results
from [DeepSeek-AI et al., 2025], which show RL improvements from DeepSeek-v3 to DeepSeek-R1 (January
25). Magistral Medium reaches 90% accuracy on AIME-24 with majority voting.

The paper is organized as follows: Section 2 details the RL algorithm we used, along with the design
choices implemented to guide the reasoning models in terms of language and format; Section 3
presents our scalable infrastructure that supports efficient training on a large cluster of GPUs;
Section 4 discusses the data selection process we employed for efficient and effective training;
Section 5 presents the performance of Magistral on reasoning and multilingual benchmarks; Section 6
shows the ablations done to motivate the training choices; Section 7 presents a PCA-based study
of the model weights’ trajectory during RL, demonstrates that RL on text data preserves or even
improves multimodal capabilities, and includes methods that worked poorly for Magistral; Section 8
shows that one can train a model to perform on par with R1 with distillation followed by RL, which
we did not use for Magistral Medium; Finally, we conclude with some future directions in Section 9.

2 Methodology
In this section, we outline the training methodology used to develop the Magistral models. This
includes our optimizations of the GRPO algorithm for training stability (Section 2.1) and our training
reward to improve both mathematical and coding capabilities, while ensuring the model adheres to
proper format, length, and language usage (Section 2.2).

2.1 Reinforcement learning algorithm

We use Group Relative Policy Optimization (GRPO) [Shao et al., 2024] as our RL algorithm. Unlike
PPO [Schulman et al., 2017], GRPO eliminates the need for a ‘critic model’, and instead uses the aver-
age reward from multiple generations per prompt from the policy to compute a baseline for advantage
calculation. Specifically, GRPO optimizes the policy πθ to maximize the following objective:

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (·|q)[

G∑
i=1

|oi|∑
t=1

1

|oi|

(
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε)Âi,t

]

−βDKL[πθ(·|q)∥πref(·|q)]
)]

,

where q represents queries drawn from the input dataset, o represents the generation of the model, ε
is the PPO clipping threshold, β is the KL penalty coefficient, and DKL denotes the Kullback–Leibler
divergence between the current policy πθ and the reference policy πref. The relative advantage, or
the group normalized advantage, is given by Âi,t =

ri−µ
σ where µ and σ are the mean and standard
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deviation of rewards computed within a single group. Building on prior work adapting GRPO for
reasoning tasks [Yu et al., 2025, Liu et al., 2025, Hu et al., 2025], we introduced several modifications:

Eliminating KL divergence. The KL divergence penalty constrains the online policy from deviating
too much from a reference policy, helping to maintain alignment with the initial model. However, in
GRPO, the policy diverges substantially regardless, and maintaining a copy of the reference model
for KL computation incurs a compute cost we find unjustified. We remove the KL penalty entirely.

Loss normalization. To avoid introducing length biases between generations in one group, we
normalize the loss by first adding token-wise loss for all tokens and all generations and then dividing
by the total length of generations in the group

∑G
i=1 |oi|.

Advantage normalization. We estimate the advantage of each token simply as Âi,t = Âi = ri − µ,
where µ is the mean of rewards within a group. Following Andrychowicz et al. [2020], we additionally
normalize the advantages in each minibatch as Ânorm

i,t = (Âi − Âmean)/Âstd where Âmean and Âstd are
the sequence-wise mean and standard deviation of the advantages Âi in a minibatch.

Relaxing the trust region’s upper bound. We allow the model to explore rare but potentially
insightful reasoning steps, preventing deterministic policies. We adopt the Clip-Higher [Yu et al.,
2025] strategy to address entropy collapse. In standard GRPO, ε-clipping limits exploration by
restricting the increase in probability of low-likelihood tokens, hindering the reinforcement of rare
but important reasoning paths. By increasing the upper clipping threshold to εhigh, low-probability
tokens have more room to grow, enhancing entropy and diversity in outputs, and improving reasoning
exploration. We found that careful tuning of εhigh is crucial to maintaining stability in the RL run. We
adjusted it between 0.26 and 0.28 during the training to keep the group entropy stable.

Eliminating non-diverse groups. Groups where all generations are either entirely correct or wrong
have zero advantage and therefore contribute nothing to the batch loss. This results in smaller
gradients with increased noise sensitivity. To address this, we filter out all groups with zero advantage
when forming training batches.

The final GRPO loss with all modifications highlighted in red is

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (·|q)

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Ânorm

i,t , clip(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− εlow, 1 + εhigh)Â

norm
i,t

]
,

s. t. ∃ 1 ≤ m < n ≤ G, rm ̸= rn.

2.2 Reward shaping

Choosing the appropriate reward is crucial for the RL algorithm to work effectively. During training,
model generations are evaluated along four axes: formatting, correctness, length, and language
consistency, which we describe below.

2.2.1 Formatting

For both math and code problems, we instruct the model to follow a specific format, which facilitates
the extraction of the model’s answer:

1. Tag requirements: (i) The model response must start with a <think> tag and must include
a corresponding </think> tag. (ii) There should be exactly one set of these tags present in
the response.

2. Mathematical responses: For mathematical outputs, the response must include the final
answer enclosed in \boxed{} within the answer section, following the </think> tag.

3. Code responses: For code outputs, the response must include at least one markdown block,
formatted with triple backticks followed by the programming language specification, in the
answer section.
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Failure to meet any of these conditions results in a reward of 0, and the response will not be graded
further. Otherwise, the response gets a reward of 0.1 and proceeds to grading.

2.2.2 Correctness

If the generated answer follows the required formatting, we extract the model solution and use a
verifier to assess its correctness.

Math correctness. The final answer is extracted from inside the last \boxed{} in the solution and
compared against the reference answer using a rule-based verifier. It normalizes both the ground-truth
and the generated answer to correctly reward semantically identical responses with different syntaxes.
We leverage a combination of different parsers and SymPy2 to evaluate outputs and compare them
to the original ground truth. An additional reward of 0.9 is given if the answer is correct, making
the total reward 1.0.

Code correctness. Code is extracted from the first markdown code block in the answer section. If the
code is written in C++, it is compiled with a timeout of 10 seconds, using the C++20 standard. We
pre-compile the bits/stdc++.h standard library header, which is commonly used in competitive
programming, to speed up the compilation process. We randomly select 20 tests from the available
test cases, ensuring that the same tests are used within a given response group. The code is then
executed against these tests, with each test having a timeout of 4 seconds and a memory limit of 300
MB. An additional reward of 0.9 is given if the code successfully passes all the tests.

2.2.3 Length penalty

Following [Yu et al., 2025], we use soft length penalty to signal the model that the hard cutoff on
maximal completion length is near. We fix two lengths lmax and lcache and compute length penalty as

Rlength(y) =


0, |y| ≤ lmax − lcache

−0.1 · |y|−lmax+lcache
lcache

, lmax − lcache < |y| ≤ lmax,

−0.1, lmax < |y|
(1)

2.2.4 Language consistency reward

A core design principle for Magistral is for it to reason in the same language as the user. Reinforcement
learning on math and coding problems without any treatment often results in mixed-language model
responses. In preliminary experiments without language constraints, we frequently observed outputs
that mixed English, Chinese, and Russian words. While these outputs were coherent, they were
undesirable from a user perspective.

To prevent language switching, we translated 10% of our problems written in English to the following
languages: French, Spanish, Italian, German, Chinese, and Russian. When calculating the reward
for a conversation—a triple of (problem, thoughts, answer)—we first normalized each of the three
components by removing LaTeX content and code blocks, and then applied a fastText classifier [Joulin
et al., 2016] to each. If the classifier indicates that all three parts used the same language, we give an
additional reward of 0.1.

These simple modifications are sufficient to enable the model to closely follow the language of the
user, with minimal code-switching, while maintaining performance on reasoning tasks. Although we
only translated the original English problems into a few languages, we observed that the model could
successfully generate chains of thought in arbitrary languages.

System prompt. We specify the format and the language requirements in the system prompt, which
can be found in Figure 2. We find that RL training is quite sensitive to the system prompt we use.
For example, the Be as casual and as long as you want part of the system prompt increases the
entropy of the model and therefore improves the exploration of the model.
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Magistral’s system prompt

A user will ask you to solve a task. You should first draft your thinking process (inner
monologue) until you have derived the final answer. Afterwards, write a self-contained
summary of your thoughts (i.e. your summary should be succinct but contain all the critical
steps you needed to reach the conclusion). You should use Markdown and Latex to format
your response. Write both your thoughts and summary in the same language as the task
posed by the user.

Your thinking process must follow the template below:
<think>
Your thoughts or/and draft, like working through an exercise on scratch paper. Be as casual
and as long as you want until you are confident to generate a correct answer.
</think>

Here, provide a concise summary that reflects your reasoning and presents a clear final
answer to the user.

Problem:

{problem}

Figure 2: Magistral’s system prompt. The system prompt spells out the format and language guidelines for
the model. The same system prompt is utilized for both mathematical and coding problems.

3 Infrastructure

In this section, we present our infrastructure for online training. We adopt a distributed RL training
system similar to those proposed in several prior works [Espeholt et al., 2018, Hu et al., 2024,
Noukhovitch et al., 2024, Sheng et al., 2024, Wu et al., 2025] that coordinates three kinds of workers:

• Trainers maintain the main copy of the model weights and perform gradient updates.

• Generators perform ‘roll-outs’, using the latest policy to return completions with log-
probabilities from the training prompts.

• Verifiers evaluate the completions produced by the generators and return a reward (see
Section 2.2 for details).

Challenges with distributed RL. Generators are a significant part of the total compute and the
part that’s unique to online RL. Their workload is highly heterogeneous and hard to predict as the
distribution of sequence lengths is highly skewed and changes over the course of training: the longest
completions can take up to 5 times longer than the shortest. One of the main constraints of the system
is to introduce no bias on sequence lengths: the distribution of completion lengths must be exactly
that of the training data, even though shorter completions finish more quickly. A competing goal is
to update the generator weights as soon as possible. We want the generations to be as on-policy as
possible, but we also want the generators to operate without waiting for each other or the trainers.

Asynchronous generations. In order to train without any approximation, we could process batches
sequentially: start generators on a batch, wait for all sequences to complete, update the model weights
for both trainers and generators, and repeat. However, this approach leads to idle generators and
low pipeline efficiency due to heterogeneous completion times. Instead, we prioritize efficiency and
operate the generators continuously at maximum throughput without ever waiting for the trainers.
We constantly gather groups from the generators, verify them, and update the trainers. After these
updates, the trainers send the new weights to the generators via NCCL, without discarding the in-flight
sequences currently being generated. Broadcasting weights from GPUs to GPUs is crucial as it
reduces the time required for a single update to below 5 seconds, even with large models and large
world sizes. We illustrate this process in Figure 3.

2https://www.sympy.org/en/index.html
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Figure 3: Online training pipeline. 1) Generators continuously output completions to prompts from input
data sources. 2) Whenever a completion is finished, it is sent to the appropriate verifier. 3) Each sequence is
sent to a different data parallel group using a pre-set permutation until every data parallel group has enough
sequences to form a batch. 4) A single gradient step is performed and the trainer and generators are updated.
In the generators, weights are replaced mid-generation, which means that in-flight generations continue with
a slightly outdated key-value cache, as we do not refresh the cache. Since the model resides on GPUs in both the
trainer and the generators, the weights are transferred using NCCL for optimal performance. The model weights
are dynamically consolidated to accommodate the different sharding topologies between trainers and generators.

As a solution is generated for a single prompt, it may experience multiple updates to the model
weights, reflecting the latest improvements from the trainers. By the time it is fully processed and
sent to the trainers, the model weights may have been updated several times, but the latest tokens are
always generated on-policy. When updating the model weights, the hidden states previously stored in
the key-value cache become slightly outdated because they were computed by previous versions of the
model. For performance, we find that recomputing the key-value cache is not necessary, potentially
due to off-policy corrections inherent to the loss function [Schulman et al., 2017].

Trainer optimization. We define a batch as a fixed number of generated completions, rather than a
fixed number of tokens. Generators send each finished completion to a random trainer rank according
to a pre-set permutation. A gradient update is performed when each data parallel rank has received
enough completions to make a batch. If the trainers are the bottleneck, as is the case in early training
when the generations are still short, we accumulate incoming generations into a blocking queue
with a fixed size limit that controls off-policy degree. A batch may be partitioned into minibatches
to perform several optimization steps (see Section 6.3). Each minibatch has a fixed number of
completions but a variable number of tokens, so it is further divided into microbatches of a fixed
token size. Since we accumulate the gradient over microbatches, the order of samples does not matter.
We take advantage of this property to implement a greedy collation algorithm, sorting the sequences
by descending size and trying to fit them one by one into a free microbatch if there is one or starting
a new otherwise. This ensures a homogeneous workload across training workers for each minibatch,
reducing padding by 19%.

4 Data curation

We limit ourselves to problems with verifiable solutions; we use mathematical problems whose
solution is a numerical answer or expression, and code problems with associated tests. We apply
extensive filtering, which we describe here.
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4.1 Math

Format filtering. We started with a large but noisy problem set of around 700k samples. We
first perform comprehensive pre-processing and filtering of the data to ensure all the problems
are complete and that the final answers were accurate and verifiable with a rule-based system.
Particularly, we filter proof-based and multi-part problems for which it is difficult to verify
correctness. Furthermore, we reformulate multiple-choice problems into statement-based problems
for more robust verification and increased difficulty.

Difficulty filtering. We implemented a two-stage filtering pipeline to curate a dataset of problems
at a ‘goldilocks’ difficulty level, neither too easy nor too hard for the model to learn from. First, we
performed an initial difficulty assessment using Mistral Large 2 [MistralAI, 2024], by sampling 16
solutions for each problem and removing the ones that are either never solved or solved with a high
success rate. This initial, curated set of problems was then used to train a 24B model via our online
RL pipeline, resulting in a small but capable checkpoint which we use solely for grading.

In the second stage, this stronger, RL-trained model was used to re-grade the entire original dataset.
We again sampled 16 responses for each problem, filtering out the easiest and the still-unsolved
problems. We then further filter out potentially incorrect problems where a majority of samples have
the same final answer but disagree with the “ground-truth” answer. This is because when the model
consistently reaches a consensus that contradicts the reference solution, the problems themselves are
more likely to have wrong ground-truth answers.

This two-stage methodology was crucial because a single pass with the initial, weaker Mistral Large 2
model would have been insufficient. Its reasoning capabilities would likely have caused it to discard
many genuinely difficult problems by incorrectly classifying them as unsolvable. By using a stronger,
RL-trained model for a second pass, we ensured that these valuable and challenging training examples
were accurately assessed and retained.

Table 1: Number of math training samples after different filtering stages.

Initial data w/ Format filtering w/ Difficulty filtering

699k 501k 38k

4.2 Code

We gathered code contest data from various sources. Each data point includes a problem statement
and, when available, correct solutions and related tests. For the training process, we want problem
statements and a large number of correct tests per problem. In order to achieve this, we first remove
any problems without solutions and without enough tests. Each solution is then executed on all
available tests, and we discard tests with insufficient agreement. For tests with sufficient agreement
but where no solution succeeded, we assume that the test is incorrect and update it to reflect the most
common result among the solutions’ outputs. In cases where code problems lack tests, we generate
additional tests and subject them to the same evaluation process.

Finally, where applicable, problem statements are duplicated to require code in Python or C++, two
commonly used languages in competitive programming. This process resulted in a dataset of 35k
code problems.

5 Experiment and results

In this section we present the Magistral models. Our goal is to answer two questions: (i) how far can
one get with pure reinforcement learning on a large base model? (ii) given a strong teacher model,
how can one achieve the strongest possible lightweight model? To this end, we trained Magistral
Medium, on top of Mistral Medium 3 [MistralAI, 2025] with pure RL; and Magistral Small, which
began with SFT traces derived from Magistral Medium.
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Figure 4: Overview of the filtering, training and RL stages discussed in the paper. We do RL over
Mistral Medium 3 to get Magistral Medium. We use this model to generate answers for a large set of diverse
prompts. We use these generated traces to finetune Mistral Small 3 and then perform RL to get Magistral Small.

5.1 Evaluation benchmarks and baselines

We report results on benchmarks that assess capabilities in the fields of mathematics, coding,
and STEM. For math, we provide results on the American Invitational Mathematics Examination
benchmarks (AIME’24, AIME’25), and on the MATH dataset [Hendrycks et al., 2021]. In coding, we
include LiveCodeBench (both v5 and v6 versions) [Jain et al., 2024], and Aider Polyglot [Gauthier,
2024]. For STEM, we report results based on the GPQA dataset [Rein et al., 2024]. Additionally,
we also report our results on the text-only questions from Humanity’s Last Exam [Phan et al., 2025]
which comprises of 2,500 questions across dozens of subjects, including mathematics, humanities,
and natural sciences. For all evaluation tasks, we set the temperature to 0.7 and use a top-p of 1.0
for Math evals and GPQA, and 0.95 for coding tasks. The maximum token length is set to 40k for
AIME and LiveCodeBench, and 32k for all other evaluations.

For baselines we include results from [DeepSeek-AI et al., 2025], which reports comparable datapoints
for training with RL at scale, both with and without SFT on traces from a reasoning model.

5.2 Magistral Medium – reasoning RL from scratch

Here our goal is to evaluate the quality of our RL stack by training a model without any ‘cold
start’ (i.e priming for reasoning by distillation of reasoning traces). We used Mistral Medium 3
Instruct [MistralAI, 2025] as the starting checkpoint for this run. Training was done in multiple stages
with distinct hyper-parameters. Particularly, the stages were designed to ensure the following criteria
were always satisfied:

1. Dataset is not too easy. As the model performance increases, we increase the difficulty of
the data. Harder data splits are constructed by including more complicated data (which were
filtered out in earlier stages) or removing completely solved problems from the data.

2. Generation length does not stop growing. To prevent stagnation in generation length,
we increase both maximal allowed completion length and maximal completion length
lmax − lcache not punished by length penalty (c.f. Section 2.2.3). We increased lmax − lcache
twice as 16k → 24k and 24k → 32k.

3. KV-cache memory burden is not too large. As generation length increases, the memory
usage associated with the KV cache increases. To address this, we scale down the total
number of concurrent requests running nasync, the batch size nbatch, and the minibatch size
nminibatch. The impact of batch size is discussed in Section 6.3. During training we decreased
batch size twice as 8k → 4k and 4k → 2k.

Table 2 shows the results of Magistral Medium trained with pure RL, compared against analogous
experiments from [DeepSeek-AI et al., 2025]. We find our RL pipeline alone yields a nearly 50%
accuracy increase in AIME ’24 (pass@1), and 30% on LiveCodeBench (v5).

5.3 Magistral Small – RL on top of reasoning SFT bootstrapping

Given a strong ‘teacher’ model in Magistral Medium, we next explore how one can train the strongest
possible student model. To do so, we train Magistral Small, which is ‘cold-started’ with SFT traces
from Magistral Medium.
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In contrast with pure RL training (which benefits from a small set of extremely clean and difficult
training points, Section 4), we find diversity of prompts to be important for the reasoning cold-start.
We begin by extracting traces with correct answers from the RL training of Magistral Medium,
excluding those from early steps with short CoTs. We also maintain a mixed difficulty level of the
problems by limiting number of generations per problem to avoid biasing the collected traces towards
easier problems and also upsampling problems with lower pass rates.

We augment this SFT cold-start data by generating responses from our Magistral Medium on a
large set of diverse prompts, sourced from OpenThoughts [Guha et al., 2025] and the code subset
of OpenR1 [Hugging Face, 2025, Penedo et al., 2025]. We perform additional filtering on top and
kept a subset of the prompts. This gives us a reasoning dataset with mixed difficulty. We also include
10% of datapoints for general instruction tuning in order to preserve non-reasoning capabilities. We
finetuned Mistral Small 3 Instruct (a 24-billion parameter model) for 4 epochs, and chose the best
checkpoint on AIME’24 as the initial checkpoint for the following RL stage.

We then trained this SFT checkpoint with RL using a batch size of 2048 sequences, and a maximum
non-penalized completion length lmax − lcache of 32k. We used a sampling temperature of 1.0 for
our generations, as it provided the best balance between avoiding the lack of diversity seen at lower
temperatures and the incoherent outputs generated at higher temperatures. We use a εhigh of 0.3, to
encourage exploration, as the cold-started model yielded responses with far lower entropy.

Table 3 shows the performance of the 24B model trained under three different paradigms: with SFT
alone; with RL alone; and with RL on top of the cold-start checkpoint. Here, contrary to findings
from [DeepSeek-AI et al., 2025], we find one can get substantial boosts with RL even on a smaller
base model, over and above distillation from the larger teacher. This underscores the strength of the
RL stack introduced in this work.

Table 2: Results of Magistral Medium trained solely with RL. To reduce variance, we compute the average
over 64 runs for AIME (shown as pass@1/maj@64) and over 16 runs for LiveCodeBench. Humanity’s Last
Exam is evaluated only for the text subset.

Task Mistral
Medium 3

Magistral
Medium

DeepSeek-
v3

DeepSeek-
R1-Zero

DeepSeek-
R1

Reasoning SFT before RL - ✗ - ✗ ✓

AIME’24 26.8 / 43.4 73.6 / 90.0 39.2 71.0 79.8
AIME’25 21.2 / 30.0 64.9 / 83.3 28.8 - 70.0
MATH-500 91.0 94.3 90.2 95.9 97.3
GPQA 59.6 70.8 59.1 73.3 71.5
LiveCodeBench (v5) 29.1 59.4 36.2 50.0 65.9
Aider Polyglot 28.9 47.1 49.6 - 53.3
LiveCodeBench (v6) 30.0 50.3 - - -
Humanity’s Last Exam 4.4 9.0 - - 8.6

5.4 Multilingual benchmarks

To evaluate Magistral’s multilingual capabilities, we interacted with Magistral Medium in multiple
languages to check that it could reason and answer in the user’s language. We also tested Magistral
Medium on multilingual (French, Spanish, German, Italian, Russian, and Chinese) versions of the
AIME 2024 benchmark. These multilingual versions were created by translating the questions from
English into each of the languages. The results are presented in Table 4. We see that the model
performs 4.3-9.9% lower on multilingual versions compared to English, which corresponds to 1-3
questions on the actual AIME test, possibly because we constrained the language of reasoning. This
degradation is roughly similar to that of the base model. Note that on the multilingual benchmarks,
all of the reasoning and the final response are conducted in the input language (i.e., not English).
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Table 3: Performance of Magistral Small compared with different training setups across various bench-
marks. We report the performance of three distinct 24B models: Mistral Small 24B fine-tuned on reasoning
traces from Magistral Medium (SFT), Mistral Small 24B trained from scratch with RL (RL only), and Mistral
Small 24B fine-tuned on Magistral Medium traces and subsequently enhanced with RL (SFT + RL) which is the
final Magistral Small. We observe that the combination of fine-tuning on reasoning traces with RL leads to the
best performance. For the evaluation of Humanity’s Last Exam, only the text subset was considered.

Task SFT RL-only SFT + RL (Magistral Small)

AIME’24pass@1 65.4 65.8 70.7
AIME’24maj@64 90.0 86.7 83.3
AIME’25pass@1 55.6 51.9 62.8
AIME’25maj@64 76.7 66.7 76.7
MATH-500 93.2 95.4 95.9
GPQA 63.4 68.8 68.2
LiveCodeBench (v5) 52.2 46.4 55.8
LiveCodeBench (v6) 44.6 42.4 47.4
Humanity’s Last Exam 5.3 6.1 6.4

Table 4: Magistral Medium’s pass@1 performance on multilingual versions of the AIME 2024 benchmark.

Language English French Spanish German Italian Russian Chinese

AIME’24 (pass@1) 73.6 68.5 69.3 66.8 66.7 65.0 63.7

6 Ablations

In this section, we tweak parameters of the training process to investigate what happens when RL is
performed on only one modality, compare RL to the distillation SFT baseline, and shed light on two
training choices we had to reckon with, batch and minibatch size, and advantage normalization.

6.1 Cross-domain generalization

We investigate the ability of our model to generalize across domains by training on one domain (math
or code) and evaluating on the other. Specifically, we conduct two experiments on the 24B model:
one where the model is trained exclusively on math data and evaluated on both math and code, and
another where it is trained only on code and evaluated similarly. As shown in Table 5, the model
demonstrates strong performance to out-of-domain tasks, showcasing the generalization ability of RL.

6.2 Distillation vs. RL for small models

Previous works [DeepSeek-AI et al., 2025] have observed that smaller models relying solely on RL
may not be able to achieve performance comparable to those distilled from larger reasoning models.
However, our findings contradict this observation: we achieved strong results even with pure RL on

Table 5: Cross-domain generalization during math-only and code-only RL for a 24B model

Model AIME’24 LiveCodeBench v5

Starting Checkpoint 32.2 22.7
RL (Math only) 62.5 38.3 (+15.6)

RL (Code only) 49.7 (+17.5) 42.7
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top of Mistral Small 3. As shown in Figure 5, our Mistral Small 3 with pure RL achieves similar
performance on AIME’24 as the distilled version. It even outperforms the distilled version on MATH
and GPQA, but has slightly lower performance on code benchmarks such as LiveCodeBench. These
results suggest that the benefits of RL are not exclusive to larger base models and hold equally well
for smaller models. Furthermore, our findings indicate that the RL on top of the distilled checkpoint
can yield even better performance, leading to over 5 points gain across various benchmarks.

Figure 5: Performance of Magistral Small compared with different training setups on various benchmarks.
We report the performance of three distinct 24B models: Mistral Small 24B trained from scratch with RL
(RL only), Mistral Small 24B fine-tuned on reasoning traces from Magistral Medium, and Mistral Small 24B
fine-tuned on Magistral Medium traces and subsequently enhanced with RL, which is the final Magistral Small.
We observe that the combination of fine-tuning on reasoning traces with RL leads to the best performance.

6.3 Batch and minibatch size

Reinforcement learning (RL) algorithms like PPO or GRPO introduce two distinct batch scales.
The batch size, denoted as nbatch, refers to the number of sequences collected before updating the
generator’s weights. The minibatch size, nminibatch, indicates the number of sequences used to compute
the gradient and perform a single optimization step. It is important to note that nminibatch must divide
nbatch. Additionally, in an asynchronous RL pipeline, a third scale is introduced: the number of
concurrent sequences, nasync, which represents the number of sequences being generated in parallel.
If the number of concurrently generated sequences nasync is much larger than the batch size nbatch, a
typical sequence was generated with nasync/nbatch different policies and could be too off-policy. The
effect becomes worse as we do more than one minibatch update per one batch.

To test this hypothesis we prepared a strong 3B model using SFT starting from Ministral 3B, and
then trained it using GRPO on math-only data with a constant learning rate, a fixed nasync = 4096,
and different values of nbatch and nminibatch in {1024, 2048, 4096, 8192}.

We observe that as long as we keep nbatch = nminibatch and that nbatch is large enough, the performance
is very similar when plotted depending on the number of processed prompts, as can be seen in
Figure 6 (a). On the other hand, when nminibatch is decreased while keeping nbatch constant, the
performance suddenly degrades, even when compared to nbatch reduced to the same nminibatch, as
highlighted in Figure 6 (b). When nbatch ≤ 1024, the training becomes less stable, so we opt to keep
ratio nasync/nbatch ≤ 2 and nbatch = nminibatch during final training and further ablations.

6.4 Advantage normalization

We experimented with the following advantage normalization methods:

• Minibatch - normalize advantages within a minibatch
• Group normalization - normalize advantages within a group over a single prompt
• No normalization - do not normalize advantages

Previous works [Liu et al., 2025, Andrychowicz et al., 2020] have noted that normalization over a
group of generations for a given question can lead to a bias where easy questions or hard questions are
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Figure 6: Impact of batch and minibatch sizes on RL training rewards. (a) Reward during RL training
of 3B model on math data for different batch sizes, while keeping minibatch size equal to batch size. Number
of concurrently generated sequences is kept constant at 4096. (b) Reward during RL training in the same setup
for different minibatch sizes at fixed batch size of 8192 sequences. We observe that performance doesn’t depend
strongly on batch size, but degrades when there are more than 2 minibatches in a batch.

upweighted due to their lower standard deviation values. However, we did not observe any significant
effects on evaluation performance or the growth of the length as shown in Figure 7. Hence, we
decided to use minibatch normalization for all our experiments.

Figure 7: Results for training with different advantage normalizations in GRPO. We observe that different
normalization methods do not lead to significant difference either in evaluation performance or the length
growth during training.

7 Analysis

In this section, we investigate the dynamics of RL training and present evidence that increasing
completion length is the main resource that improves the performance of the model. Those dynamics
are not destructive to previous capabilities, and the reasoning capabilities can even generalize:
multimodal reasoning gets improved for free, and function calling and instruction following remain
unchanged or even get a small boost. Additionally, we discuss two ideas that didn’t work for us -
giving more fine-grained rewards in code tasks based on test completion rate and controlling entropy
via entropy bonus term in the loss.

7.1 Reinforcement learning moves weights in low-dimensional space

To better understand the dynamics of Magistral during RL training, we follow the method of [Li
et al., 2018] to analyze the Magistral Small RL-only run and visualize the loss landscape around the
final checkpoint.

First, we stack the weights of all intermediate checkpoints in a matrix X ∈ RT×W , where T is
the number of checkpoints and W is the number of weights. Then, we subtract the mean weights
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across the T checkpoints and perform a PCA analysis to find two principal components of the
matrix X in the weight space. Since the weight space is very high-dimensional, we use the iterative
Lanczos-Arnoldi algorithm [Saad, 2003] to find the top-2 eigenvectors of XTX . As a result, we
obtain two components c1 and c2 that we L2-normalize to have a unit norm.

Second, we perturb the final checkpoint weights w∗ ∈ RW by adding two components as

w(α1, α2) = w∗ + α1c1 + α2c2 (2)

We evaluate each perturbed checkpoint on a fixed batch of 512 prompts, generating 16 completions
per prompt, and using the same reward setting as in Magistral Small RL-only run. Finally, we
compute mean reward and mean output length for each checkpoint and plot it in (α1, α2) coordinates.

Figure 8: Reward and length evolution in w(α1, α2) hyperplane. Black arrow trajectory is a projection
of intermediate checkpoints of Magistral Small RL-only run on the hyperplane. Black points are perturbed
checkpoints computed using Equation 2. Intermediate values are computed with linear interpolation on the
triangular grid.

We clearly observe that there is a “length” direction - as model goes from right to left in Figure 8,
mean reward and output length grow up until the point where length starts to hit length penalty and
maximally allowed completion length. We additionally plot dependence of raw reward without length
penalty on output length, observing a ubiquitous log scaling in Figure 9.

Figure 9: Reward scaling with output length. Each point corresponds to a perturbed checkpoint computed
with Equation 2. We generate 8192 completions with the checkpoint and evaluate mean output length and raw
reward (reward without length penalty). We perform linear regression on checkpoints with mean output length
between 1500 and 8000 and observe that reward scales logarithmically with the output length.

7.2 Eating the multimodal free lunch

The initial checkpoints utilized for RL training, Mistral Small 3 and Mistral Medium 3, are multimodal
models and come with associated vision encoders. During the RL training phase, as the models are
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Figure 10: Performance on multimodal benchmarks.

trained on text-only data, one might expect the multimodal performance to degrade. However, on the
contrary, we discover that the models not only retain their multimodal capabilities, but unexpectedly
develop enhanced multimodal reasoning abilities. The resulting models also showcase improved
performance on multimodal benchmarks.

We report results multimodal benchmarks designed to assess reasoning capabilities, specifically
MathVista [Lu et al., 2024], MMMU [Yue et al., 2024], and MMMU-Pro [Yue et al., 2025]. Our results
in Figure 10 show no performance regression across most benchmarks, with notable improvements
observed on MMMU (+5%, reaching 70%), MMMU-Pro-Standard (+4.4%, reaching 57.9%) and
MMMU-Pro-Vision (+12%, reaching 52.1%). While the most significant improvements are seen in
scientific questions that require textual reasoning, we observe that the model transfers its extended
thinking process across all types of questions (see figures 14 15 16 for qualitative examples).

7.3 Impact of RL on other capabilities

Similar to the multimodal capabilities mentioned in Section 7.2, our RL checkpoint maintains and
even improves its tool calling and instruction following capabilities [Zhou et al., 2023] (Table 6).
This allows us to integrate the model out-of-the-box with existing tools as shown.

Table 6: Benchmarks before and after reinforcement learning. Internal bench is Mistral’s internal function
calling benchmark. We use an internal version of IFEval that fixes some issues with the public version. The
scores are not comparable with other publicly shared scores.

Category Benchmark Mistral Medium 3 Magistral Medium

Function calling Internal bench 87.2 87.4

Instruction following IFEval 86.8 87.4

7.4 Unsuccessful approaches

In this section, we present various approaches that we tried but ultimately did not adopt, as they did
not yield any performance improvements.

7.4.1 Partial reward for code data

The strict requirements of competitive programming, in terms of correctness and adherence to
complexity constraints, result in sparse rewards, often causing many code generations to be discarded
due to limited reward diversity.

To address this, we experimented with a proportional reward: based on the fraction of tests passed, as
opposed to the binary reward discussed in Section 2.2.2. In an ablation with a 24B model over 250
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steps, we found that training with proportional rewards was faster, discarding three times less data.
However, this approach led to slightly lower final performance on benchmarks, with a 2% decrease
on LiveCodeBench (Figure 11a), and slower growth in generation length (Figure 11b).

The hope was that a reward based on the fraction of tests passed should provide a richer signal than
a simple pass/fail for RL training. However, the potential issue is that partial rewards could also
provide false signal to incorrect solutions and be more sensitive to minor inconsistencies between
implementations, potentially leading to less meaningful training batches.

Figure 11: Binary vs proportional reward for code problems. (a) Accuracy on AIME and LiveCodeBench af-
ter 250 steps of training with binary reward and proportional reward. Performance on LiveCodeBench is 2% lower
with proportional rewards. (b) Length evolution throughout training. Length increases more with binary rewards.

7.4.2 Entropy targeting

Figure 12: Impact of εhigh on the entropy distribution throughout training. (a) Entropy evolution
throughout training of a 3B model on a math only dataset. Entropy drops with entropy bonus, while higher
εhigh maintains entropy, allowing for better exploration. (b) Entropy evolution throughout training of a 3B model
on a math and code dataset. Entropy explodes with entropy bonus, even though the coefficient is the same
as the math only version. Higher εhigh behaves better, allowing entropy to decrease.

To encourage exploration and prevent entropy collapse during RL training, a common strategy in
the literature [Schulman et al., 2017] is to add an entropy bonus loss term. However, we found this
strategy to be unstable as the effect of the entropy bonus varies significantly depending on the dataset.
For a math-only dataset, entropy drops with the entropy bonus, while a higher εhigh maintains entropy,
enhancing exploration (Figure 12a). On a math and code dataset, entropy increases excessively with
the entropy bonus (even with the same coefficient as in the math-only run), while a higher εhigh allows
entropy to decrease, improving exploitation (Figure 12b).
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Instead, we found it more effective to depend on εhigh, as also noted in literature [Yu et al., 2025,
Wang et al., 2025]. This method avoids the instability issues associated with entropy bonuses.

Another approach for controlling entropy is adding a KL term to the PPO loss. However, as the
generation distribution is expected to deviate significantly from the original model, we found that
using a KL penalty primarily hinders training, consistent with previous findings [Yu et al., 2025]. We
attempted using an exponential moving average of the weights during training as a reference for KL,
but found it simpler to manually adjust εhigh.

Figure 13: Benchmark performance of Magistral Medium fine-tuned on open-source traces. All results are
reported using pass@1. The shaded region highlights the additional improvement achieved through RL on top of
supervised fine-tuning. We find that while fine-tuning on open-source traces yields strong results, applying RL
further enhances performance significantly. In particular, the accuracy on AIME’25 increases by more than 12%.
Please note that the performance on GPQA Diamond drops after RL from 72.9% to 71.0%.

8 RL on model finetuned using OSS reasoning traces

As an experiment, we also tried to first finetune Mistral Medium 3 using open source reasoning
datasets OpenThoughts [Guha et al., 2025] and the code subset of OpenR1 [Hugging Face, 2025,
Penedo et al., 2025] including both the prompts and the generations from these datasets i.e. Deepseek
R1 generated traces. This included a total of about 1.3M generations. We then run RL on top of this
finetuned checkpoint using our most difficult subset of the data. As shown in Figure 13, applying RL
yields substantial performance gains over the SFT checkpoint. Notably, the RL model improves by
over 10 points on AIME’25 and 5 points on LiveCodeBench, achieving a final performance level on
par with Deepseek-R1 on code and math benchmarks.

9 Conclusion

Magistral is our first step towards generally capable systems with reinforcement learning. We look
forward to the next research problems ahead of us: what loss and optimization algorithms are the
most appropriate, how much gain can be unlocked by bootstrapping a model on its own reasoning
traces, or how to scale to the next order of magnitude of compute. Looking ahead, we are also
excited to push the boundaries of RL across a whole range of applications, with tool-use, integrated
multimodality, and agents. As we explore this frontier, we remain committed to contributing to
science in a transparent and optimistic manner.
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Problem:

A ray of light passes from medium 1 to medium 2 to medium 3 as shown in the diagram.
What may be concluded about the speed of light in each medium?
A. v1 > v2 > v3
B. v1 > v3 > v2
C. v2 > v1 > v3
D. v2 > v3 > v1
E. v3 > v1 > v2

Model Generation:
<think> First, I need to understand the behavior of light as it passes through different mediums.
According to Snell’s Law, the speed of light changes when it enters a medium with a different
refractive index. The refractive index (n) of a medium is inversely related to the speed of light
(v) in that medium, meaning that as the refractive index increases, the speed of light decreases.

Looking at the diagram: The light beam starts from medium 1 to medium 2, bending towards the
normal line. This indicates that medium 2 has a higher refractive index than medium 1 because
light bends towards the normal when it slows down (entering a denser medium). The light beam that
passes from medium 2 to medium 3, bending away from the normal line. This indicates that medium 3
has a lower refractive index than medium 2 because light bends away from the normal when it speeds
up (entering a less dense medium).

Now, let’s analyze the speed of light in each medium: In medium 1, the speed of light is v1. In
medium 2, since the light bends towards the normal when entering from medium 1, medium 2 has a
higher refractive index than medium 1. Therefore, the speed of light in medium 2 is v2, is less
than in medium 1, so v1 > v2. In medium 3, since the light bends away from the normal when
entering from medium 2, medium 3 has a lower refractive index than medium 2. Therefore, the speed
of light in medium 3, v3, is greater than in medium 2, so v3 > v2.

Now, we need to compare the speeds v1, v2, and v3. From the above analysis, v1 > v2 v3 > v2

But we also need to determine the relationship between v1 and v3. Since medium 3 has a lower
refractive index than medium 1(because light bends away from the normal when transitioning from
medium 2 to medium 3, and we already know medium 2 has a higher refractive index than medium 1),
it implies that medium 3 is less dense than medium 1. Therefore, the speed of light in medium 3
will be greater than in medium 1.

So, in sum: v3 > v1 > v2

Looking at the options provided: A. v1 > v2 > v3 B. v1 > v3 > v2 C. v2 > v1 > v3 D. v2 >
v3 > v1 E. v3 > v1 > v2 The correct option that matches our conclusion is A.

</think>

Final Answer: A

Figure 14: A physics multimodal problem and its solution generated by Magistral Medium.
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Problem:
Which arrow points to a hydrogen bond?

Model Generation:
<think> Alright, I have this image showing a molecular structure with arrows labeled a, b, c, and
d. The question is asking which arrow points to a hydrogen bond. Let’s break this down.

First, I need to understand what a hydrogen bond is. A hydrogen bond is a type of attractive
interaction between a hydrogen atom and an electronegative atom like oxygen, nitrogen, or fluorine.
In this case, since we have water molecules (H2O), the hydrogen bonds would be between the
hydrogen atoms and the oxygen atoms of different water molecules.

Looking at the image:
• Arrow a points to a bond between a hydrogen atom and an oxygen atom within the same water

molecule. That’s a covalent bond, not a hydrogen bond.
• Arrow b points to another bond within a single water molecule, which is again a covalent bond.
• Arrow c points to a bond between a hydrogen atom of one water molecule and an oxygen atom of

another water molecule. This looks like a hydrogen bond because it’s between different water
molecules.

• Arrow d points to a bond between hydrogen and oxygen within a single water molecule, so that’s
another covalent bond.

From this, it seems that arrow c is pointing to the hydrogen bond between the hydrogen of one
water molecule and the oxygen of another water molecule.

But just to be sure, I should double check. Hydrogen bonds typically occur between molecules,
not within the same molecule, and they involve a hydrogen atom being attracted to a highly
electronegative atom like oxygen. Arrow c is indeed showing this intermolecular interaction
between an H of one molecule and O of another molecule.

</think>

The image shows four arrows labeled a, b, c, and d. Arrow c points to a bond between a
hydrogen atom in one water molecule and an oxygen atom in another water molecule. This is
characteristic of a hydrogen bond, which occurs between different molecules, not within the
same molecule.

Final Answer: c

Figure 15: A chemistry multimodal problem and its solution generated by Magistral Medium.
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Problem:
What is leading to the crinkling of this leaf’s veins?
A. Bacterial pathogen
B. I don’t know and I don’t want to guess
C. Fungal pathogen
D. Oomycete (watermold) pathogen
E. Physiological condition, no pathogen involved.

Model Generation:
<think> The image shows a close-up of a leaf with some crinkling and discoloration along the veins.
To determine the cause of the crinkling, we need to consider the different possibilities given in
the options.

Firstly, let’s rule out some options: Bacterial pathogens (Option A) usually cause symptoms
such as water-soaked lesions, wilting, and bacterial ooze, not typically the crinkling seen
here. Fungal pathogens (Option C) often cause spots, mildews, or powdery substances on leaves,
which doesn’t match the appearance here. Oomycete (watermold) pathogens (Option D) often lead to
water-soaked lesions and a more generalized blight rather than vein-specific crinkling.

Now, let’s consider the remaining options: Option B ("I don’t know and I don’t want to guess")
is not a valid answer as we are tasked to determine the cause of the crinkling. Option E
(physiological condition) could be a possibility as it involves conditions like nutrient
deficiencies or environmental stress that can lead to crinkling without pathogen involvement.

The appearance of the leaf shows crinkling and some discoloration along the veins, which can
often be attributed to physiological conditions. These might include nutrient deficiencies, water
stress, or other environmental factors that do not involve pathogens.

Given the visual clues and the typical symptoms associated with different causes, the most likely
cause of the crinkling in this leaf’s veins is a physiological condition rather than a pathogen.

</think>

Summary: The image shows a leaf with crinkled veins and some discoloration. After
considering the typical symptoms associated with various causes, it’s most likely that the
crinkling is due to a physiological condition rather than a bacterial, fungal, or oomycete
pathogen. Therefore, the correct answer is:

Final Answer: E

Figure 16: A biology multimodal problem and its solution generated by Magistral Medium.
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